Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm

نویسندگان

  • Hao Li
  • Jing Lu
  • Guohua Shi
  • Yudong Zhang
چکیده

With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging.

A retinal imaging instrument that integrates adaptive optics (AO), scanning laser ophthalmoscopy (SLO), and retinal tracking components was built and tested. The system uses a Hartmann-Shack wave-front sensor (HS-WS) and MEMS-based deformable mirror (DM) for AO-correction of high-resolution, confocal SLO images. The system includes a wide-field line-scanning laser ophthalmoscope for easy orient...

متن کامل

Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and posi...

متن کامل

Tracking adaptive optics scanning laser ophthalmoscope

Active image stabilization for an adaptive optics scanning laser ophthalmoscope (AOSLO) was developed and tested in human subjects. The tracking device, a high speed, closed-loop optical servo which uses retinal features as tracking target, is separate from AOSLO optical path. The tracking system and AOSLO beams are combined via a dichroic beam splitter in front of the eye. The primary tracking...

متن کامل

The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope

Retinal vascular diseases are a leading cause of blindness and visual disability. The advent of adaptive optics retinal imaging has enabled us to image the retinal vascular at cellular resolutions, but imaging of the vasculature can be difficult due to the complex nature of the images, including features of many other retinal structures, such as the nerve fiber layer, glial and other cells. In ...

متن کامل

Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope.

We have used an adaptive optics confocal scanning laser ophthalmoscope to assess oxygen saturation in small retinal vessels. Images of the vessels with a diameter smaller than 50 μm are recorded at oxygen sensitive and isosbestic wavelengths (680 and 796 nm, respectively). The vessel optical densities (ODs) are determined by a computer algorithm. Then, OD ratios (ODRs), which are inversely prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010